超声波与次声波的作用与危害
2017-11-30 来自: 厦门和伟达超声波设备有限公司 浏览次数:2676
超声波
超声波一般由具有磁致伸缩或压电效应的晶体的振动产生。它的显著特点是频率高,波长短,衍射不严重,因而具有良好的定向传播特性,而且易于聚焦。也由于其频率高,故而超声波的声强通常比一般声波大得多。用聚焦的方法,可以获得声强高达109W/m2的超声波。超声波在液体、固体中传播时,衰减很小。在不透明的固体中,能穿透几十米的厚度。超声波的这些特性,在技术上得到广泛的应用。
作用
利用超声波的定向发射性质,可以探测水中物体,如探测鱼群、潜艇等,也可用来测量海深。由于海水的导电性良好,电磁波在海水中传播时,吸收非常严重,因而电磁雷达无法使用。利用声波雷达——声纳,可以探测出潜艇的方位和距离,因为超声波碰到杂质或介质分界面时有显著的反射,所以可以用来探测工件内部的缺陷。超声探伤的优点是不伤损工件,可以探测大型工件,如用于探测万吨水压机的主轴和横梁等。此外,在医学上可用探测人体内部的病变,如“B超”仪就是利用超声波来显示人体内部结构的图像。
目前超声探伤正向着显像方向发展,如用声电管把声信号变换成电信号,再用显像管显示出目的物的像来。随着激光全息技术的发展,声全息也日益发展起来。把声全息记录的信息再用光显示出来,可直接看到被测物体的图像。声全息在地质,医学等领域有着重要的意义。
由于超声波能量大而且集中,所以也可以用来切削、焊接、钻孔、清洗机件,还可以用来处理种子和促进化学反应等。
超声波在介质中的传播特性,如波速,衰减,吸收等与介质的某些特性(如弹性模量、浓度、密度、化学成份、黏度等)或状态参量(如温度、压力、流速等)密切有关,利用这些特性可以间接测量其他有关物理量。这种非声量的声测法具有测量精度高,连度快等优点。
由于超声波的频率与一般无线电波的频率相近,因此利用超声元件代替某些电子元件,可以实现电子元件难于起到的作用。超声延迟线就是其中一例。因为超声波在介质中的传播速度比起电磁波小得多,用超声波延迟时间就方便得多。
次声波
次声是频率低于可听声频率范围的声,它的频率范围大致为10-4~20Hz。
作用
由于次声的频率很低,所以大气对次声波的吸收系数很小,因而其穿透力极强,可传播至极远处而能量衰减很小。10Hz以下的次声波可以传播至数千千米的距离。1983年夏,位于印度尼西亚苏门答腊岛和爪哇岛之间的喀拉喀托火山爆发,火山爆发时产生的强次声波绕地球转了3圈,历时108小时后才慢慢消逝。全世界的微气压计都记录到了它的振动余波。1986年1月29日,美国航天飞机"挑战者"号升空爆炸,爆炸产生的次声波历时12小时53分钟,其爆炸威力之强,连远在1万多千米处的我国北京香山中科院声学研究所监测站的监测仪都"听"到了。通常的隔音吸音方法对次声波的特强穿透力作用极微,7000 Hz的声波用一张纸即可隔挡,而7Hz的次声波用一堵厚墙也挡不住,次声波可以穿透十几米厚的钢筋混凝土。
危害
次声波具有较大的破坏性。强烈的次声波通过固体媒质的传播,会直接破坏建筑物,使其损坏或坍塌。1980年,我国南京某广场的一座大楼施工时,打桩机产生的强烈振动波,把工地附近一家电影院的墙壁震裂,致使这家电影院不得不被拆掉重建。
次声波对人类而言可以说是一个双刃剑。一方面,人们通过研究自然现象产生的次声波的特性和产生机制,可以更深入地认识这些现象的特性和规律,例如人们利用测定极光产生次声波的特性来研究极光活动的规律等。利用接收到的被测声源所辐射出的次声波,探测它的位置、大小和其他特性,例如通过接收核爆炸、火箭发射火炮或台风所产生的次声波去探测这些次声源的有关参量。许多灾害性现象如火山喷发、龙卷风和雷暴等在发生前可能会辐射出次声波,因此有可能利用这些前兆现象预测灾害事件等等。
另一方面,次声波对人体是有害的,人类***防止次声波的污染。让人头痛的是,由于次声波的穿透力极强,几乎没有什么办法能够消除它对人体的危害。人们惟一能做的就是在各种次声波污染物上(交通工具、打桩机等)安上减振器,把它对人体的程危害减小到